Machine Learning A-Z™: Hands-On Python & R In Data Science

What Will I Learn?
  • Master Machine Learning on Python & R
  • Have a great intuition of many Machine Learning models
  • Make accurate predictions
  • Make powerful analysis
  • Make robust Machine Learning models
  • Create strong added value to your business
  • Use Machine Learning for personal purpose
  • Handle specific topics like Reinforcement Learning, NLP and Deep Learning
  • Handle advanced techniques like Dimensionality Reduction
  • Know which Machine Learning model to choose for each type of problem
  • Build an army of powerful Machine Learning models and know how to combine them to solve any problem
Requirements
  • Just some high school mathematics level.
Description
Interested in the field of Machine Learning? Then this course is for you!
This course has been designed by two professional Data Scientists so that we can share our knowledge and help you learn complex theory, algorithms and coding libraries in a simple way.
We will walk you step-by-step into the World of Machine Learning. With every tutorial you will develop new skills and improve your understanding of this challenging yet lucrative sub-field of Data Science.
This course is fun and exciting, but at the same time we dive deep into Machine Learning. It is structured the following way:
  • Part 1 - Data Preprocessing
  • Part 2 - Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
  • Part 3 - Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
  • Part 4 - Clustering: K-Means, Hierarchical Clustering
  • Part 5 - Association Rule Learning: Apriori, Eclat
  • Part 6 - Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
  • Part 7 - Natural Language Processing: Bag-of-words model and algorithms for NLP
  • Part 8 - Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
  • Part 9 - Dimensionality Reduction: PCA, LDA, Kernel PCA
  • Part 10 - Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost
Moreover, the course is packed with practical exercises which are based on real-life examples. So not only will you learn the theory, but you will also get some hands-on practice building your own models. And as a bonus, this course includes both Python and R code templates which you can download and use on your own projects.

More

2 comments:

Monica MS said...

I always like and search such topics and everything connected to them.Excellent and very cool idea and the subject at the top of magnificence and I am happy to comment on this topic through which we address the idea of positive reaction.
Chatbot Company in Dubai
Chatbot Companies in Dubai
Chatbot Development
AI Chatbot Development
Chatbot Companies in UAE
Chatbot Company in Chennai
Chatbot Company in Mumbai
Chatbot Company in Delhi
Chatbot Development Companies

latesttechnologyblogs said...

Usually I never comment on blogs but your article is so convincing that I never stop myself to say something about it. You’re doing a great job Man learn Python Online Course