def Fah():

F=int(input('Enter the temperature on Fahrenheit(F)'))

C=(F - 32) * 5/9

K=(F - 32) * 5/9 + 273.15

print("Fahrenheit Value :",F)

print("Celsius Value :",C)

print("Kelvin Value:",K)

def Cel():

C=int(input('Enter the temperature on Celsius(C)'))

F=(C * 9/5) + 32

K=C + 273.15

print("Fahrenheit Value :",F)

print("Celsius Value :",C)

print("Kelvin Value:",K)

def Kel():

K=int(input('Enter the temperature on Kelvin(K)'))

F=(K - 273.15) * 9/5 + 32

C=K - 273.15

print("Fahrenheit Value :",F)

print("Celsius Value :",C)

print("Kelvin Value:",K)

print("\n")

print('1.Fahrenheit to Celsius & Kelvin\n2.Celsius to Fahrenheit & Kelvin\n3.Kelvin to Fahrenheit & Celsius\n4.Exit')

n=int(input('Enter the choice:'))

if n==1:

Fah()

elif n==2:

Cel()

elif n==3:

Kel()

elif n==4:

exit()

else:

print('Invalid options')

Solve Problems by Coding Solutions - A Complete solution for python programming

### Newton Raphson Method

# Newton Raphson Method

# The Newton-Raphson method (also known as Newton's method) is a way

# to quickly find a good approximation for the root of a real-valued function

xcube=int(input('Enter the values for Xcube: '))

xsquare=int(input('Enter the values for Xsquare: '))

x=int(input('Enter the values for X: '))

constant=int(input('Enter the values for Constant: '))

X0=int(input('Enter the values for inital vaule X0: '))

# It can be any value, but based on the incorrectness the root convergence

# will delay. Here we can use trail and error method for input value.

X1= X0-((((xcube*X0*X0*X0)+(xsquare*X0*X0)+(x*X0)+constant)/((xcube*3*X0*X0)+(xsquare*2*X0)+x)))

print ("Root at first approximations:",X1)

X2= X1-((((xcube*X1*X1*X1)+(xsquare*X1*X1)+(x*X1)+constant)/((xcube*3*X1*X1)+(xsquare*2*X1)+x)))

print ("Root at second approximations:",X2)

X3= X2-((((xcube*X2*X2*X2)+(xsquare*X2*X2)+(x*X2)+constant)/((xcube*3*X2*X2)+(xsquare*2*X2)+x)))

print ("Root at thrid approximations:",X3)

X4= X3-((((xcube*X3*X3*X3)+(xsquare*X3*X3)+(x*X3)+constant)/((xcube*3*X3*X3)+(xsquare*2*X3)+x)))

print ("Root at fourth approximations:",X4)

X5= X4-((((xcube*X4*X4*X4)+(xsquare*X4*X4)+(x*X4)+constant)/((xcube*3*X4*X4)+(xsquare*2*X4)+x)))

print ("Root at fifth approximations:",X5)

# The Newton-Raphson method (also known as Newton's method) is a way

# to quickly find a good approximation for the root of a real-valued function

xcube=int(input('Enter the values for Xcube: '))

xsquare=int(input('Enter the values for Xsquare: '))

x=int(input('Enter the values for X: '))

constant=int(input('Enter the values for Constant: '))

X0=int(input('Enter the values for inital vaule X0: '))

# It can be any value, but based on the incorrectness the root convergence

# will delay. Here we can use trail and error method for input value.

X1= X0-((((xcube*X0*X0*X0)+(xsquare*X0*X0)+(x*X0)+constant)/((xcube*3*X0*X0)+(xsquare*2*X0)+x)))

print ("Root at first approximations:",X1)

X2= X1-((((xcube*X1*X1*X1)+(xsquare*X1*X1)+(x*X1)+constant)/((xcube*3*X1*X1)+(xsquare*2*X1)+x)))

print ("Root at second approximations:",X2)

X3= X2-((((xcube*X2*X2*X2)+(xsquare*X2*X2)+(x*X2)+constant)/((xcube*3*X2*X2)+(xsquare*2*X2)+x)))

print ("Root at thrid approximations:",X3)

X4= X3-((((xcube*X3*X3*X3)+(xsquare*X3*X3)+(x*X3)+constant)/((xcube*3*X3*X3)+(xsquare*2*X3)+x)))

print ("Root at fourth approximations:",X4)

X5= X4-((((xcube*X4*X4*X4)+(xsquare*X4*X4)+(x*X4)+constant)/((xcube*3*X4*X4)+(xsquare*2*X4)+x)))

print ("Root at fifth approximations:",X5)

Subscribe to:
Posts (Atom)