install portaudio using:
pip install portAudio
Solve Problems by Coding Solutions - A Complete solution for python programming
install portaudio using:
pip install portAudio
# importing classes and functions from the tkinter
from tkinter import *
# Function for clearing the
# contents of all entry boxes
def clear_all() :
# whole content of entry boxes is deleted
principle_field.delete(0, END)
rate_field.delete(0, END)
time_field.delete(0, END)
compound_field.delete(0, END)
# set focus on the principle_field entry box
principle_field.focus_set()
# Function to find compound interest
def calculate_ci():
# get a content from entry box
principle = int(principle_field.get())
rate = float(rate_field.get())
time = int(time_field.get())
# Calculates compound interest
CI = principle * (pow((1 + rate / 100), time))
# insert method inserting the
# value in the text entry box.
compound_field.insert(10, CI)
#code
if __name__ == "__main__" :
# Create a GUI window
root = Tk()
# Set the background colour of GUI window
root.configure(background = 'white')
# Set the configuration of GUI window
root.geometry("400x250")
# set the name of tkinter GUI window
root.title("Compound Interest Calculator")
# Create a Principle Amount : label
label1 = Label(root, text = "Principle Amount(Rs) : ",
fg = 'white', bg = 'black')
# Create a Rate : label
label2 = Label(root, text = "Rate(%) : ",
fg = 'white', bg = 'black')
# Create a Time : label
label3 = Label(root, text = "Time(years) : ",
fg = 'white', bg = 'black')
# Create a Compound Interest : label
label4 = Label(root, text = "Compound Interest : ",
fg = 'white', bg = 'black')
# grid method is used for placing
# the widgets at respective positions
# in table like structure .
# padx keyword argument used to set padding along x-axis .
# pady keyword argument used to set padding along y-axis .
label1.grid(row = 1, column = 0, padx = 10, pady = 10)
label2.grid(row = 2, column = 0, padx = 10, pady = 10)
label3.grid(row = 3, column = 0, padx = 10, pady = 10)
label4.grid(row = 5, column = 0, padx = 10, pady = 10)
# Create a entry box
# for filling or typing the information.
principle_field = Entry(root)
rate_field = Entry(root)
time_field = Entry(root)
compound_field = Entry(root)
# grid method is used for placing
# the widgets at respective positions
# in table like structure .
# padx keyword argument used to set padding along x-axis .
# pady keyword argument used to set padding along y-axis .
principle_field.grid(row = 1, column = 1, padx = 10, pady = 10)
rate_field.grid(row = 2, column = 1, padx = 10, pady = 10)
time_field.grid(row = 3, column = 1, padx = 10, pady = 10)
compound_field.grid(row = 5, column = 1, padx = 10, pady = 10)
# Create a Submit Button and attached
# to calculate_ci function
button1 = Button(root, text = "Submit", bg = "red",
fg = "black", command = calculate_ci)
# Create a Clear Button and attached
# to clear_all function
button2 = Button(root, text = "Clear", bg = "red",
fg = "black", command = clear_all)
button1.grid(row = 4, column = 1, pady = 10)
button2.grid(row = 6, column = 1, pady = 10)
# Start the GUI
root.mainloop()
import random
import math
# Taking Inputs
lower_input = int(input("Enter lower_input number:- "))
# Taking Inputs
upper_input = int(input("Enter upper_input number:- "))
# generating random number between
# the lower_input and upper_input
x = random.randint(lower_input, upper_input)
print("\n\tYou've only ",
round(math.log(upper_input - lower_input + 1, 2)),
" chances to guess the integer!\n")
# Initializing the number of guesses.
count = 0
# for calculation of minimum number of
# guesses depends upon range
while count < math.log(upper_input - lower_input + 1, 2):
count += 1
# taking guessing number as input
guess = int(input("Guess a number:- "))
# Condition testing
if x == guess:
print("Congratulations you did it in ",
count, " try")
# Once guessed, loop will break
break
elif x > guess:
print("You guessed too small!")
elif x < guess:
print("You Guessed too high!")
# If Guessing is more than required guesses,
# shows this output.
if count >= math.log(upper_input - lower_input + 1, 2):
print("\nThe number is %d" % x)
print("\tBetter Luck Next time!")
class LNode :
def __init__(self):
self.data = None
self.next = None
class TNode :
def __init__(self):
self.data = None
self.left = None
self.right = None
head = None
def sortedListToBST():
global head
n = countLNodes(head)
return sortedListToBSTRecur(n)
def sortedListToBSTRecur( n) :
global head
if (n <= 0) :
return None
left = sortedListToBSTRecur( int(n/2))
root = newNode((head).data)
root.left = left
head = (head).next
root.right = sortedListToBSTRecur( n - int(n/2) - 1)
return root
def countLNodes(head) :
count = 0
temp = head
while(temp != None):
temp = temp.next
count = count + 1
return count
def push(head, new_data) :
new_node = LNode()
new_node.data = new_data
new_node.next = (head)
(head) = new_node
return head
def printList(node):
while(node != None):
print( node.data ,end= " ")
node = node.next
def newNode(data) :
node = TNode()
node.data = data
node.left = None
node.right = None
return node
def preOrder( node) :
if (node == None) :
return
print(node.data, end = " " )
preOrder(node.left)
preOrder(node.right)
head = None
head = push(head, 7)
head = push(head, 6)
head = push(head, 5)
head = push(head, 4)
head = push(head, 3)
head = push(head, 2)
head = push(head, 1)
print("Given Linked List " )
printList(head)
root = sortedListToBST()
print("\nPreOrder Traversal of constructed BST ")
preOrder(root)
import turtle
turtle_cursor = turtle.Turtle()
turtle_screen = turtle.Screen()
def pause():
turtle_cursor.speed(2)
for i in range(100):
turtle_cursor.left(90)
def upper_dot_of_python_logo():
turtle_cursor.penup()
turtle_cursor.right(90)
turtle_cursor.forward(160)
turtle_cursor.left(90)
turtle_cursor.forward(70)
turtle_cursor.pencolor("white")
turtle_cursor.dot(35)
def second_position():
turtle_cursor.penup()
turtle_cursor.forward(20)
turtle_cursor.right(90)
turtle_cursor.forward(10)
turtle_cursor.right(90)
turtle_cursor.pendown()
def half():
turtle_cursor.forward(50)
draw_side_curve_of_python_logo()
turtle_cursor.forward(90)
draw_first_left_curve_of_python_logo()
turtle_cursor.forward(40)
turtle_cursor.left(90)
turtle_cursor.forward(80)
turtle_cursor.right(90)
turtle_cursor.forward(10)
turtle_cursor.right(90)
turtle_cursor.forward(120)
draw_second_left_curve_of_python_logo()
turtle_cursor.forward(30)
turtle_cursor.left(90)
turtle_cursor.forward(50)
draw_right_curve_of_python_logo()
turtle_cursor.forward(40)
turtle_cursor.end_fill()
def lower_dot_of_python_logo():
turtle_cursor.left(90)
turtle_cursor.penup()
turtle_cursor.forward(310)
turtle_cursor.left(90)
turtle_cursor.forward(120)
turtle_cursor.pendown()
turtle_cursor.dot(35)
def draw_first_left_curve_of_python_logo():
draw_side_curve_of_python_logo()
turtle_cursor.forward(80)
draw_side_curve_of_python_logo()
def draw_second_left_curve_of_python_logo():
draw_side_curve_of_python_logo()
turtle_cursor.forward(90)
draw_side_curve_of_python_logo()
def draw_side_curve_of_python_logo():
for i in range(90):
turtle_cursor.left(1)
turtle_cursor.forward(1)
def draw_right_curve_of_python_logo():
for i in range(90):
turtle_cursor.right(1)
turtle_cursor.forward(1)
turtle_cursor.pensize(2)
turtle_cursor.speed(10)
turtle_cursor.pensize(2)
turtle_cursor.pencolor("black")
turtle_screen.bgcolor("white")
turtle_cursor.fillcolor("#306998")
turtle_cursor.begin_fill()
half()
turtle_cursor.end_fill()
second_position()
turtle_cursor.fillcolor("#FFD43B")
turtle_cursor.begin_fill()
half()
turtle_cursor.end_fill()
upper_dot_of_python_logo()
lower_dot_of_python_logo()
pause