def Fah():
F=int(input('Enter the temperature on Fahrenheit(F)'))
C=(F - 32) * 5/9
K=(F - 32) * 5/9 + 273.15
print("Fahrenheit Value :",F)
print("Celsius Value :",C)
print("Kelvin Value:",K)
def Cel():
C=int(input('Enter the temperature on Celsius(C)'))
F=(C * 9/5) + 32
K=C + 273.15
print("Fahrenheit Value :",F)
print("Celsius Value :",C)
print("Kelvin Value:",K)
def Kel():
K=int(input('Enter the temperature on Kelvin(K)'))
F=(K - 273.15) * 9/5 + 32
C=K - 273.15
print("Fahrenheit Value :",F)
print("Celsius Value :",C)
print("Kelvin Value:",K)
print("\n")
print('1.Fahrenheit to Celsius & Kelvin\n2.Celsius to Fahrenheit & Kelvin\n3.Kelvin to Fahrenheit & Celsius\n4.Exit')
n=int(input('Enter the choice:'))
if n==1:
Fah()
elif n==2:
Cel()
elif n==3:
Kel()
elif n==4:
exit()
else:
print('Invalid options')
Solve Problems by Coding Solutions - A Complete solution for python programming
Newton Raphson Method
# Newton Raphson Method
# The Newton-Raphson method (also known as Newton's method) is a way
# to quickly find a good approximation for the root of a real-valued function
xcube=int(input('Enter the values for Xcube: '))
xsquare=int(input('Enter the values for Xsquare: '))
x=int(input('Enter the values for X: '))
constant=int(input('Enter the values for Constant: '))
X0=int(input('Enter the values for inital vaule X0: '))
# It can be any value, but based on the incorrectness the root convergence
# will delay. Here we can use trail and error method for input value.
X1= X0-((((xcube*X0*X0*X0)+(xsquare*X0*X0)+(x*X0)+constant)/((xcube*3*X0*X0)+(xsquare*2*X0)+x)))
print ("Root at first approximations:",X1)
X2= X1-((((xcube*X1*X1*X1)+(xsquare*X1*X1)+(x*X1)+constant)/((xcube*3*X1*X1)+(xsquare*2*X1)+x)))
print ("Root at second approximations:",X2)
X3= X2-((((xcube*X2*X2*X2)+(xsquare*X2*X2)+(x*X2)+constant)/((xcube*3*X2*X2)+(xsquare*2*X2)+x)))
print ("Root at thrid approximations:",X3)
X4= X3-((((xcube*X3*X3*X3)+(xsquare*X3*X3)+(x*X3)+constant)/((xcube*3*X3*X3)+(xsquare*2*X3)+x)))
print ("Root at fourth approximations:",X4)
X5= X4-((((xcube*X4*X4*X4)+(xsquare*X4*X4)+(x*X4)+constant)/((xcube*3*X4*X4)+(xsquare*2*X4)+x)))
print ("Root at fifth approximations:",X5)
# The Newton-Raphson method (also known as Newton's method) is a way
# to quickly find a good approximation for the root of a real-valued function
xcube=int(input('Enter the values for Xcube: '))
xsquare=int(input('Enter the values for Xsquare: '))
x=int(input('Enter the values for X: '))
constant=int(input('Enter the values for Constant: '))
X0=int(input('Enter the values for inital vaule X0: '))
# It can be any value, but based on the incorrectness the root convergence
# will delay. Here we can use trail and error method for input value.
X1= X0-((((xcube*X0*X0*X0)+(xsquare*X0*X0)+(x*X0)+constant)/((xcube*3*X0*X0)+(xsquare*2*X0)+x)))
print ("Root at first approximations:",X1)
X2= X1-((((xcube*X1*X1*X1)+(xsquare*X1*X1)+(x*X1)+constant)/((xcube*3*X1*X1)+(xsquare*2*X1)+x)))
print ("Root at second approximations:",X2)
X3= X2-((((xcube*X2*X2*X2)+(xsquare*X2*X2)+(x*X2)+constant)/((xcube*3*X2*X2)+(xsquare*2*X2)+x)))
print ("Root at thrid approximations:",X3)
X4= X3-((((xcube*X3*X3*X3)+(xsquare*X3*X3)+(x*X3)+constant)/((xcube*3*X3*X3)+(xsquare*2*X3)+x)))
print ("Root at fourth approximations:",X4)
X5= X4-((((xcube*X4*X4*X4)+(xsquare*X4*X4)+(x*X4)+constant)/((xcube*3*X4*X4)+(xsquare*2*X4)+x)))
print ("Root at fifth approximations:",X5)
To read a coordinate point in a XY coordinate system and determine its Quadrant
x=int(input('Enter the values for X'))
y=int(input('Enter the values for Y'))
if x > 0 and y > 0:
print ('x, y point lies in the First quandrant')
elif x < 0 and y > 0:
print ('x, y point lies in the Second quandrant')
elif x < 0 and y < 0:
print ('x, y point lies in the Third quandrant')
elif x > 0 and y < 0:
print ('x, y point lies in the Fourth quandrant')
elif x == 0 and y == 0:
print ('x, y point lies at the origin')
y=int(input('Enter the values for Y'))
if x > 0 and y > 0:
print ('x, y point lies in the First quandrant')
elif x < 0 and y > 0:
print ('x, y point lies in the Second quandrant')
elif x < 0 and y < 0:
print ('x, y point lies in the Third quandrant')
elif x > 0 and y < 0:
print ('x, y point lies in the Fourth quandrant')
elif x == 0 and y == 0:
print ('x, y point lies at the origin')
Reading files into Python
f = open("1.txt")
#create a text file which consists of names of students in class
# Printing file all the names
print("File contnet as in text file:",f.read())
f = open("1.txt")
# Printing file one by one letters
print("\nFile contnet one by one word fromtext file:")
next = f.read(1)
while next != "":
print(next)
next = f.read(1)
#create a text file which consists of names of students in class
# Printing file all the names
print("File contnet as in text file:",f.read())
f = open("1.txt")
# Printing file one by one letters
print("\nFile contnet one by one word fromtext file:")
next = f.read(1)
while next != "":
print(next)
next = f.read(1)
Multiplication of two Matrices
X = [[4,1,7],[2,1,8],[3 ,7,1]];
Y = [[6,8,1],[9,7,5],[2,3,1]];
result = [[0,0,0],[0,0,0],[0,0,0]];
for i in range(len(X)):
for j in range(len(Y[0])):
for k in range(len(Y)):
result[i][j] += X[i][k] * Y[k][j]
for r in result:
print(r)
Y = [[6,8,1],[9,7,5],[2,3,1]];
result = [[0,0,0],[0,0,0],[0,0,0]];
for i in range(len(X)):
for j in range(len(Y[0])):
for k in range(len(Y)):
result[i][j] += X[i][k] * Y[k][j]
for r in result:
print(r)
Subscribe to:
Posts (Atom)