# Newton Raphson Method
# The Newton-Raphson method (also known as Newton's method) is a way
# to quickly find a good approximation for the root of a real-valued function
xcube=int(input('Enter the values for Xcube: '))
xsquare=int(input('Enter the values for Xsquare: '))
x=int(input('Enter the values for X: '))
constant=int(input('Enter the values for Constant: '))
X0=int(input('Enter the values for inital vaule X0: '))
# It can be any value, but based on the incorrectness the root convergence
# will delay. Here we can use trail and error method for input value.
X1= X0-((((xcube*X0*X0*X0)+(xsquare*X0*X0)+(x*X0)+constant)/((xcube*3*X0*X0)+(xsquare*2*X0)+x)))
print ("Root at first approximations:",X1)
X2= X1-((((xcube*X1*X1*X1)+(xsquare*X1*X1)+(x*X1)+constant)/((xcube*3*X1*X1)+(xsquare*2*X1)+x)))
print ("Root at second approximations:",X2)
X3= X2-((((xcube*X2*X2*X2)+(xsquare*X2*X2)+(x*X2)+constant)/((xcube*3*X2*X2)+(xsquare*2*X2)+x)))
print ("Root at thrid approximations:",X3)
X4= X3-((((xcube*X3*X3*X3)+(xsquare*X3*X3)+(x*X3)+constant)/((xcube*3*X3*X3)+(xsquare*2*X3)+x)))
print ("Root at fourth approximations:",X4)
X5= X4-((((xcube*X4*X4*X4)+(xsquare*X4*X4)+(x*X4)+constant)/((xcube*3*X4*X4)+(xsquare*2*X4)+x)))
print ("Root at fifth approximations:",X5)
No comments:
Post a Comment