import numpy as np
def nonlin(x,deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))
X = np.array([ [0,0,1],
[0,1,1],
[1,0,1],
[1,1,1] ])
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
syn0 = 2*np.random.random((3,1)) - 1
for iter in range(10000):
l0 = X
l1 = nonlin(np.dot(l0,syn0))
l1_error = y - l1
l1_delta = l1_error * nonlin(l1,True)
syn0 += np.dot(l0.T,l1_delta)
print ("Output After Training:")
print (l1)
def nonlin(x,deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))
X = np.array([ [0,0,1],
[0,1,1],
[1,0,1],
[1,1,1] ])
y = np.array([[0,0,1,1]]).T
np.random.seed(1)
syn0 = 2*np.random.random((3,1)) - 1
for iter in range(10000):
l0 = X
l1 = nonlin(np.dot(l0,syn0))
l1_error = y - l1
l1_delta = l1_error * nonlin(l1,True)
syn0 += np.dot(l0.T,l1_delta)
print ("Output After Training:")
print (l1)
No comments:
Post a Comment