Retro Arcade Game Emulator Launcher

import tkinter as tk

from tkinter import messagebox, filedialog

import os

import subprocess

import sqlite3


# ===== Emulator Configuration =====

EMULATOR_PATH = "emulator.exe"  # Update with actual emulator exe

ROMS_FOLDER = "roms"


# ===== Database Setup =====

def init_db():

    conn = sqlite3.connect("user_data.db")

    cur = conn.cursor()

    cur.execute('''

        CREATE TABLE IF NOT EXISTS favorites (

            id INTEGER PRIMARY KEY,

            rom TEXT UNIQUE

        )

    ''')

    conn.commit()

    conn.close()


def add_favorite(rom):

    conn = sqlite3.connect("user_data.db")

    cur = conn.cursor()

    try:

        cur.execute("INSERT INTO favorites (rom) VALUES (?)", (rom,))

        conn.commit()

    except sqlite3.IntegrityError:

        pass

    conn.close()


def remove_favorite(rom):

    conn = sqlite3.connect("user_data.db")

    cur = conn.cursor()

    cur.execute("DELETE FROM favorites WHERE rom=?", (rom,))

    conn.commit()

    conn.close()


def get_favorites():

    conn = sqlite3.connect("user_data.db")

    cur = conn.cursor()

    cur.execute("SELECT rom FROM favorites")

    favs = [row[0] for row in cur.fetchall()]

    conn.close()

    return favs


# ===== Launcher GUI =====

class GameLauncher:

    def __init__(self, root):

        self.root = root

        self.root.title("šŸŽ® Retro Arcade Launcher")

        self.root.geometry("500x500")


        self.favorites = get_favorites()


        self.label = tk.Label(root, text="Available Games", font=("Arial", 14, "bold"))

        self.label.pack(pady=10)


        self.listbox = tk.Listbox(root, width=50, height=20)

        self.populate_list()

        self.listbox.pack()


        btn_frame = tk.Frame(root)

        btn_frame.pack(pady=10)


        tk.Button(btn_frame, text="▶️ Play", command=self.launch_game).grid(row=0, column=0, padx=5)

        tk.Button(btn_frame, text="⭐ Add Fav", command=self.add_to_favorites).grid(row=0, column=1, padx=5)

        tk.Button(btn_frame, text="❌ Remove Fav", command=self.remove_from_favorites).grid(row=0, column=2, padx=5)

        tk.Button(btn_frame, text="šŸ” Refresh", command=self.refresh).grid(row=0, column=3, padx=5)


    def populate_list(self):

        self.listbox.delete(0, tk.END)

        if not os.path.exists(ROMS_FOLDER):

            os.makedirs(ROMS_FOLDER)


        files = [f for f in os.listdir(ROMS_FOLDER) if f.endswith((".nes", ".gba"))]

        for f in files:

            label = f + (" ⭐" if f in self.favorites else "")

            self.listbox.insert(tk.END, label)


    def get_selected_rom(self):

        try:

            selected = self.listbox.get(tk.ACTIVE)

            return selected.replace(" ⭐", "")

        except:

            return None


    def launch_game(self):

        rom = self.get_selected_rom()

        if not rom:

            messagebox.showwarning("No Selection", "Please select a game.")

            return


        rom_path = os.path.join(ROMS_FOLDER, rom)

        if not os.path.exists(EMULATOR_PATH):

            messagebox.showerror("Emulator Not Found", "Update the emulator path in the code.")

            return


        subprocess.Popen([EMULATOR_PATH, rom_path])

        print(f"Launching {rom}...")


    def add_to_favorites(self):

        rom = self.get_selected_rom()

        if rom:

            add_favorite(rom)

            self.refresh()


    def remove_from_favorites(self):

        rom = self.get_selected_rom()

        if rom:

            remove_favorite(rom)

            self.refresh()


    def refresh(self):

        self.favorites = get_favorites()

        self.populate_list()


# === Main ===

if __name__ == "__main__":

    init_db()

    root = tk.Tk()

    app = GameLauncher(root)

    root.mainloop()


Secure Diary with Face Unlock

 Install Requirements

pip install face_recognition opencv-python cryptography

Capture Reference Face

# Optional: capture face from webcam and save as known_face.jpg
import cv2
cam = cv2.VideoCapture(0)
ret, frame = cam.read()
cv2.imwrite("known_face.jpg", frame)
cam.release()
print("Reference face saved.")

Secure Diary Code

import face_recognition
import cv2
import os
from cryptography.fernet import Fernet
from getpass import getpass
import base64

KEY_FILE = "secret.key"
ENC_FILE = "diary.enc"
KNOWN_FACE_FILE = "known_face.jpg"

# === Face Unlock ===
def verify_face():
    if not os.path.exists(KNOWN_FACE_FILE):
        print("Known face image not found.")
        return False

    known_image = face_recognition.load_image_file(KNOWN_FACE_FILE)
    known_encoding = face_recognition.face_encodings(known_image)[0]

    cam = cv2.VideoCapture(0)
    print("Looking for face...")
    ret, frame = cam.read()
    cam.release()

    try:
        unknown_encoding = face_recognition.face_encodings(frame)[0]
        result = face_recognition.compare_faces([known_encoding], unknown_encoding)[0]
        return result
    except IndexError:
        print("No face detected.")
        return False

# === Encryption Helpers ===
def generate_key(password):
    return base64.urlsafe_b64encode(password.encode().ljust(32)[:32])

def encrypt_diary(content, key):
    f = Fernet(key)
    with open(ENC_FILE, "wb") as file:
        file.write(f.encrypt(content.encode()))
    print("Diary encrypted & saved.")

def decrypt_diary(key):
    f = Fernet(key)
    with open(ENC_FILE, "rb") as file:
        data = file.read()
    return f.decrypt(data).decode()

# === Main Diary App ===
def diary_app():
    print("šŸ” Secure Diary Access")

    if not verify_face():
        print("Face verification failed. Access denied.")
        return

    password = getpass("Enter your diary password: ")
    key = generate_key(password)

    if os.path.exists(ENC_FILE):
        try:
            decrypted = decrypt_diary(key)
            print("\nšŸ“– Your Diary:\n", decrypted)
        except:
            print("Failed to decrypt. Wrong password?")
            return
    else:
        print("No diary found. Creating new one...")

    new_entry = input("\n✍️ Write new entry (append to diary):\n> ")
    combined = decrypted + "\n\n" + new_entry if 'decrypted' in locals() else new_entry
    encrypt_diary(combined, key)

if __name__ == "__main__":
    diary_app()

Screen Time Tracker

import time

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import win32gui  # Windows-only; use AppKit for Mac


LOG_FILE = "screen_time_log.csv"

TRACK_DURATION_MINUTES = 1  # Change as needed

INTERVAL_SECONDS = 5


def get_active_window_title():

    try:

        return win32gui.GetWindowText(win32gui.GetForegroundWindow())

    except:

        return "Unknown"


def track_screen_time(duration_minutes=1, interval=5):

    end_time = time.time() + (duration_minutes * 60)

    usage_log = []


    print("Tracking started... Press Ctrl+C to stop early.")

    while time.time() < end_time:

        window = get_active_window_title()

        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

        usage_log.append((timestamp, window))

        time.sleep(interval)


    # Save to CSV

    df = pd.DataFrame(usage_log, columns=["Timestamp", "Window"])

    df.to_csv(LOG_FILE, index=False)

    print(f"Tracking complete. Data saved to {LOG_FILE}")

    return df


def generate_report(csv_file):

    df = pd.read_csv(csv_file)

    df["Window"] = df["Window"].fillna("Unknown")


    # Count frequency of window usage

    summary = df["Window"].value_counts().head(10)  # Top 10 apps/windows


    # Plot

    plt.figure(figsize=(10, 6))

    summary.plot(kind="bar", color="skyblue")

    plt.title("Most Used Windows/Apps")

    plt.xlabel("Window Title")

    plt.ylabel("Active Window Count")

    plt.xticks(rotation=45, ha="right")

    plt.tight_layout()

    plt.show()


if __name__ == "__main__":

    df = track_screen_time(TRACK_DURATION_MINUTES, INTERVAL_SECONDS)

    generate_report(LOG_FILE)


News Authenticity Checker

import tkinter as tk

from tkinter import messagebox

from newspaper import Article

from sklearn.feature_extraction.text import TfidfVectorizer

import requests


NEWS_API_KEY = 'your_newsapi_key_here'  # Replace with your NewsAPI key


# ---------- News Verifier Logic ----------

def extract_keywords(text, top_n=10):

    vectorizer = TfidfVectorizer(stop_words='english')

    X = vectorizer.fit_transform([text])

    keywords = sorted(zip(vectorizer.get_feature_names_out(), X.toarray()[0]), key=lambda x: -x[1])

    return [k[0] for k in keywords[:top_n]]


def fetch_related_news(keywords):

    query = ' OR '.join(keywords[:3])  # Limit to top 3

    url = f'https://newsapi.org/v2/everything?q={query}&language=en&apiKey={NEWS_API_KEY}'

    res = requests.get(url)

    if res.status_code != 200:

        return []

    return [a['title'] + ' ' + a['description'] for a in res.json().get('articles', [])]


def calculate_authenticity(article_keywords, related_news):

    related_text = ' '.join(related_news)

    matches = [kw for kw in article_keywords if kw.lower() in related_text.lower()]

    return int((len(matches) / len(article_keywords)) * 100) if article_keywords else 0


# ---------- GUI ----------

class NewsCheckerApp:

    def __init__(self, root):

        self.root = root

        self.root.title("šŸ•µ️ News Authenticity Checker")


        tk.Label(root, text="Paste News Article URL:").pack()

        self.url_entry = tk.Entry(root, width=60)

        self.url_entry.pack(pady=5)


        tk.Button(root, text="šŸ” Check Authenticity", command=self.check_news).pack(pady=10)


        self.result_label = tk.Label(root, text="", font=("Arial", 12, "bold"))

        self.result_label.pack(pady=20)


    def check_news(self):

        url = self.url_entry.get().strip()

        if not url:

            messagebox.showerror("Error", "Please enter a news URL.")

            return


        try:

            article = Article(url)

            article.download()

            article.parse()

            content = article.text


            article_keywords = extract_keywords(content)

            related_news = fetch_related_news(article_keywords)

            score = calculate_authenticity(article_keywords, related_news)


            result = f"✅ Authenticity Score: {score}%"

            if score < 40:

                result += "\n⚠️ This article may not be widely reported."

            else:

                result += "\nšŸ‘ Seems consistent with other sources."


            self.result_label.config(text=result)


        except Exception as e:

            messagebox.showerror("Error", str(e))


# ---------- Run App ----------

if __name__ == "__main__":

    root = tk.Tk()

    app = NewsCheckerApp(root)

    root.mainloop()


PDF Bill Splitter App

 import tkinter as tk

from tkinter import filedialog, messagebox

import fitz  # PyMuPDF

import re

import sqlite3

import os


# ---------- Database Setup ----------

conn = sqlite3.connect('bill_splitter.db')

cursor = conn.cursor()

cursor.execute('''

CREATE TABLE IF NOT EXISTS bills (

    id INTEGER PRIMARY KEY AUTOINCREMENT,

    filename TEXT,

    total_amount REAL,

    per_person REAL,

    roommates TEXT

)

''')

conn.commit()


# ---------- PDF Total Extractor ----------

def extract_total_from_pdf(file_path):

    try:

        doc = fitz.open(file_path)

        text = ""

        for page in doc:

            text += page.get_text()

        doc.close()


        # Try finding the largest ₹/$/Rs. number

        amounts = re.findall(r'[\₹\$\₹Rs\. ]?(\d+[,.]?\d*)', text)

        float_amounts = [float(a.replace(',', '')) for a in amounts]

        return max(float_amounts) if float_amounts else 0.0


    except Exception as e:

        messagebox.showerror("Error", f"Failed to extract total: {str(e)}")

        return 0.0


# ---------- GUI ----------

class BillSplitterApp:

    def __init__(self, root):

        self.root = root

        self.root.title("šŸ“„ PDF Bill Splitter")

        self.filename = None


        # UI Layout

        tk.Button(root, text="šŸ“‚ Upload PDF Bill", command=self.upload_pdf).pack(pady=10)


        self.total_var = tk.StringVar()

        tk.Label(root, text="šŸ’° Total Amount:").pack()

        tk.Entry(root, textvariable=self.total_var, state="readonly").pack(pady=5)


        self.roommates_entry = tk.Entry(root)

        self.roommates_entry.pack(pady=5)

        self.roommates_entry.insert(0, "Enter emails/names comma-separated")


        tk.Button(root, text="➗ Split Bill", command=self.split_bill).pack(pady=10)


    def upload_pdf(self):

        file_path = filedialog.askopenfilename(filetypes=[("PDF Files", "*.pdf")])

        if file_path:

            self.filename = os.path.basename(file_path)

            total = extract_total_from_pdf(file_path)

            self.total_var.set(f"{total:.2f}")


    def split_bill(self):

        total = self.total_var.get()

        roommates = self.roommates_entry.get().split(',')


        if not total or not roommates or len(roommates) < 1:

            messagebox.showerror("Error", "Please upload a PDF and enter roommates.")

            return


        try:

            total = float(total)

            per_person = total / len(roommates)

            roommates_clean = [r.strip() for r in roommates]


            # Save to DB

            cursor.execute('''

                INSERT INTO bills (filename, total_amount, per_person, roommates)

                VALUES (?, ?, ?, ?)

            ''', (self.filename, total, per_person, ", ".join(roommates_clean)))

            conn.commit()


            messagebox.showinfo("Success", f"Each roommate pays: ₹{per_person:.2f}")

            self.email_roommates(roommates_clean, per_person)


        except Exception as e:

            messagebox.showerror("Error", str(e))


    def email_roommates(self, roommates, amount):

        # Mock email reminder

        for r in roommates:

            print(f"[Email to {r}] Your share: ₹{amount:.2f}")


# ---------- Run ----------

if __name__ == "__main__":

    root = tk.Tk()

    app = BillSplitterApp(root)

    root.mainloop()


Mental Health Journal Analyzer

 import streamlit as st

from textblob import TextBlob

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime, timedelta

import os


# CSV to store journal data

DATA_FILE = "journal_data.csv"


# Function to analyze sentiment

def analyze_sentiment(text):

    blob = TextBlob(text)

    return blob.sentiment.polarity  # -1 to 1


# Load data

def load_data():

    if os.path.exists(DATA_FILE):

        return pd.read_csv(DATA_FILE, parse_dates=['date'])

    else:

        return pd.DataFrame(columns=["date", "entry", "sentiment"])


# Save data

def save_data(entry, sentiment):

    new_data = pd.DataFrame({

        "date": [datetime.now().date()],

        "entry": [entry],

        "sentiment": [sentiment]

    })

    data = load_data()

    data = pd.concat([data, new_data], ignore_index=True)

    data.to_csv(DATA_FILE, index=False)


# Weekly sentiment plot

def plot_sentiment(data):

    recent = data[data['date'] >= (datetime.now().date() - timedelta(days=6))]

    daily_avg = recent.groupby('date')['sentiment'].mean().reset_index()


    plt.figure(figsize=(10, 4))

    plt.plot(daily_avg['date'], daily_avg['sentiment'], marker='o', linestyle='-')

    plt.title("🧠 Weekly Mental Wellness Trend")

    plt.xlabel("Date")

    plt.ylabel("Sentiment Score")

    plt.ylim(-1, 1)

    plt.axhline(0, color='gray', linestyle='--')

    plt.grid(True)

    st.pyplot(plt)


# ---------------- STREAMLIT APP ----------------


st.set_page_config(page_title="Mental Health Journal Analyzer", layout="centered")

st.title("🧠 Mental Health Journal Analyzer")

st.markdown("Write your daily mood journal and analyze your wellness trend.")


# Input

journal_entry = st.text_area("Write today's journal entry:", height=150)


if st.button("Analyze & Save"):

    if journal_entry.strip():

        sentiment = analyze_sentiment(journal_entry)

        save_data(journal_entry, sentiment)

        st.success(f"Entry saved! Sentiment Score: {sentiment:.2f}")

    else:

        st.warning("Please write something in your journal.")


# Load and plot

data = load_data()

if not data.empty:

    st.subheader("šŸ“Š Weekly Sentiment Trend")

    plot_sentiment(data)


Code-Based Game Launcher

 import tkinter as tk

from tkinter import filedialog, messagebox

import os

import subprocess


class GameLauncher:

    def __init__(self, root):

        self.root = root

        self.root.title("šŸ•¹️ Python Game Launcher")

        self.root.geometry("500x400")

        self.root.config(bg="#1e1e1e")


        self.games = []


        self.label = tk.Label(root, text="šŸŽ® Your Python Games", font=("Helvetica", 16), fg="white", bg="#1e1e1e")

        self.label.pack(pady=10)


        self.game_listbox = tk.Listbox(root, width=50, height=15, font=("Courier", 10))

        self.game_listbox.pack(pady=10)


        self.launch_button = tk.Button(root, text="šŸš€ Launch Game", command=self.launch_game, bg="#28a745", fg="white", font=("Helvetica", 12))

        self.launch_button.pack(pady=5)


        self.load_button = tk.Button(root, text="šŸ“‚ Load Games Folder", command=self.load_games, bg="#007bff", fg="white", font=("Helvetica", 12))

        self.load_button.pack(pady=5)


    def load_games(self):

        folder_path = filedialog.askdirectory(title="Select Game Folder")

        if not folder_path:

            return


        self.games = []

        self.game_listbox.delete(0, tk.END)


        for file in os.listdir(folder_path):

            if file.endswith(".py"):

                self.games.append(os.path.join(folder_path, file))

                self.game_listbox.insert(tk.END, file)


        if not self.games:

            messagebox.showinfo("No Games Found", "No Python (.py) files found in the selected folder.")


    def launch_game(self):

        selected_index = self.game_listbox.curselection()

        if not selected_index:

            messagebox.showwarning("No Selection", "Please select a game to launch.")

            return


        game_path = self.games[selected_index[0]]

        try:

            subprocess.Popen(["python", game_path], shell=True)

        except Exception as e:

            messagebox.showerror("Error", f"Failed to launch the game:\n{e}")



# Run the launcher

if __name__ == "__main__":

    root = tk.Tk()

    app = GameLauncher(root)

    root.mainloop()


PDF Translator

 import fitz  # PyMuPDF

from googletrans import Translator

from reportlab.pdfgen import canvas

from reportlab.lib.pagesizes import A4

import tkinter as tk

from tkinter import filedialog, simpledialog, messagebox



def extract_text_from_pdf(pdf_path):

    doc = fitz.open(pdf_path)

    full_text = ""

    for page in doc:

        full_text += page.get_text()

    doc.close()

    return full_text



def translate_text(text, dest_lang='fr'):

    translator = Translator()

    try:

        translated = translator.translate(text, dest=dest_lang)

        return translated.text

    except Exception as e:

        print("Translation error:", e)

        return None



def save_text_as_pdf(text, output_path):

    c = canvas.Canvas(output_path, pagesize=A4)

    width, height = A4

    lines = text.split('\n')

    y = height - 40


    for line in lines:

        if y < 40:  # new page

            c.showPage()

            y = height - 40

        c.drawString(40, y, line)

        y -= 15


    c.save()



def run_translator():

    pdf_path = filedialog.askopenfilename(title="Select PDF", filetypes=[("PDF files", "*.pdf")])

    if not pdf_path:

        return


    lang_code = simpledialog.askstring("Language Code", "Enter target language code (e.g., 'es' for Spanish, 'de' for German):")

    if not lang_code:

        return


    try:

        extracted_text = extract_text_from_pdf(pdf_path)

        messagebox.showinfo("Info", "Text extracted. Translating...")


        translated_text = translate_text(extracted_text, dest_lang=lang_code)

        if not translated_text:

            messagebox.showerror("Error", "Translation failed.")

            return


        save_path = filedialog.asksaveasfilename(defaultextension=".pdf", filetypes=[("PDF files", "*.pdf")])

        if not save_path:

            return


        save_text_as_pdf(translated_text, save_path)

        messagebox.showinfo("Success", f"Translated PDF saved at:\n{save_path}")

    except Exception as e:

        messagebox.showerror("Error", str(e))



# GUI

root = tk.Tk()

root.title(" PDF Translator")

root.geometry("400x200")


label = tk.Label(root, text="PDF Translator", font=("Arial", 16))

label.pack(pady=20)


translate_btn = tk.Button(root, text="Select and Translate PDF", command=run_translator, bg="#007BFF", fg="white", font=("Arial", 12))

translate_btn.pack(pady=10)


root.mainloop()


Real-Time Location Tracker

 import tkinter as tk

from tkinter import messagebox

import requests

import folium

import webbrowser

from geopy.geocoders import Nominatim

import os


def get_location():

    try:

        response = requests.get("https://ipinfo.io/json")

        data = response.json()

        loc = data['loc'].split(',')

        latitude = float(loc[0])

        longitude = float(loc[1])

        city = data.get('city', 'Unknown')

        return latitude, longitude, city

    except Exception as e:

        messagebox.showerror("Error", f"Could not get location.\n{str(e)}")

        return None, None, None


def show_location():

    lat, lon, city = get_location()

    if lat is None or lon is None:

        return


    # Reverse geocode to get address

    geolocator = Nominatim(user_agent="geoapiExercises")

    location = geolocator.reverse((lat, lon), language="en")

    address = location.address if location else "Address not found"


    # Show location on map

    map_obj = folium.Map(location=[lat, lon], zoom_start=14)

    folium.Marker([lat, lon], popup=f"{address}", tooltip="You are here").add_to(map_obj)


    map_file = "real_time_location.html"

    map_obj.save(map_file)

    webbrowser.open(f"file://{os.path.abspath(map_file)}")


    location_label.config(text=f"City: {city}\nLatitude: {lat}\nLongitude: {lon}\n\n{address}")


# GUI

app = tk.Tk()

app.title("šŸ“ Real-Time Location Tracker")

app.geometry("500x300")


tk.Label(app, text="Click the button to track your location", font=("Arial", 14)).pack(pady=20)


tk.Button(app, text="Track My Location", command=show_location, bg="#1E90FF", fg="white", font=("Arial", 12)).pack(pady=10)


location_label = tk.Label(app, text="", font=("Arial", 10), justify="left", wraplength=450)

location_label.pack(pady=20)


app.mainloop()


Podcast Downloader & Organizer

import tkinter as tk

from tkinter import filedialog, messagebox, Listbox, Scrollbar

import feedparser

import requests

import os


def fetch_episodes():

    url = url_entry.get()

    if not url:

        messagebox.showerror("Error", "Please enter a podcast RSS feed URL.")

        return

    

    global feed

    feed = feedparser.parse(url)

    episodes_list.delete(0, tk.END)


    if not feed.entries:

        messagebox.showerror("Error", "No episodes found or invalid RSS URL.")

        return


    for i, entry in enumerate(feed.entries[:20]):

        title = entry.title

        episodes_list.insert(tk.END, f"{i+1}. {title}")


def download_selected():

    selected = episodes_list.curselection()

    if not selected:

        messagebox.showerror("Error", "Please select an episode to download.")

        return


    entry = feed.entries[selected[0]]

    title = feed.feed.title

    episode_title = entry.title

    audio_url = entry.enclosures[0].href if entry.enclosures else None


    if not audio_url:

        messagebox.showerror("Error", "No audio found in this episode.")

        return


    folder = os.path.join("Podcasts", title)

    os.makedirs(folder, exist_ok=True)

    filename = os.path.join(folder, f"{episode_title}.mp3")


    try:

        r = requests.get(audio_url, stream=True)

        with open(filename, 'wb') as f:

            for chunk in r.iter_content(1024):

                f.write(chunk)

        messagebox.showinfo("Success", f"Downloaded: {episode_title}")

    except Exception as e:

        messagebox.showerror("Download Failed", str(e))


# GUI setup

app = tk.Tk()

app.title("šŸŽ™️ Podcast Downloader & Organizer")

app.geometry("500x400")


tk.Label(app, text="Enter Podcast RSS Feed URL:").pack(pady=5)

url_entry = tk.Entry(app, width=60)

url_entry.pack(pady=5)


tk.Button(app, text="Fetch Episodes", command=fetch_episodes).pack(pady=5)


frame = tk.Frame(app)

frame.pack(pady=10, fill=tk.BOTH, expand=True)


scrollbar = Scrollbar(frame)

scrollbar.pack(side=tk.RIGHT, fill=tk.Y)


episodes_list = Listbox(frame, yscrollcommand=scrollbar.set, width=80)

episodes_list.pack(padx=10, pady=10, expand=True)

scrollbar.config(command=episodes_list.yview)


tk.Button(app, text="Download Selected Episode", command=download_selected, bg="#4CAF50", fg="white").pack(pady=10)


app.mainloop()


Invoice Data Extractor

import tkinter as tk

from tkinter import filedialog, messagebox

from PIL import Image

import pytesseract

from pdf2image import convert_from_path

import re

import os


# Optional: Set Tesseract path

# pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'


def extract_text_from_file(file_path):

    if file_path.lower().endswith('.pdf'):

        images = convert_from_path(file_path, dpi=300)

        text = ""

        for image in images:

            text += pytesseract.image_to_string(image)

        return text

    elif file_path.lower().endswith(('.png', '.jpg', '.jpeg')):

        image = Image.open(file_path)

        return pytesseract.image_to_string(image)

    else:

        return ""


def extract_invoice_data(text):

    invoice_number = re.search(r'Invoice\s*#?:?\s*(\w+)', text, re.IGNORECASE)

    date = re.search(r'Date\s*:?(\s*\d{1,2}/\d{1,2}/\d{2,4})', text, re.IGNORECASE)

    total = re.search(r'Total\s*:?[\s$]*(\d+[\.,]?\d*)', text, re.IGNORECASE)


    return {

        "Invoice Number": invoice_number.group(1) if invoice_number else "Not Found",

        "Date": date.group(1).strip() if date else "Not Found",

        "Total Amount": total.group(1) if total else "Not Found"

    }


def process_invoice():

    file_path = filedialog.askopenfilename(title="Select Invoice", filetypes=[("PDF/Image Files", "*.pdf *.jpg *.png *.jpeg")])

    if not file_path:

        return


    text = extract_text_from_file(file_path)

    data = extract_invoice_data(text)


    result = f"""

    šŸ“„ File: {os.path.basename(file_path)}

    🧾 Invoice Number: {data['Invoice Number']}

    šŸ“… Date: {data['Date']}

    šŸ’° Total: {data['Total Amount']}

    """

    messagebox.showinfo("Extracted Invoice Data", result)


# GUI Setup

app = tk.Tk()

app.title("🧾 Invoice Data Extractor")

app.geometry("400x200")

app.configure(bg="#f9f9f9")


label = tk.Label(app, text="Click below to select an invoice PDF or image", bg="#f9f9f9", font=("Helvetica", 12))

label.pack(pady=20)


btn = tk.Button(app, text="Select Invoice", command=process_invoice, bg="#4CAF50", fg="white", font=("Helvetica", 12), padx=10, pady=5)

btn.pack()


app.mainloop()


File Locker CLI

import argparse

import getpass

import os

from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives import hashes

from cryptography.fernet import Fernet

import base64


def derive_key(password: str, salt: bytes) -> bytes:

    kdf = PBKDF2HMAC(

        algorithm=hashes.SHA256(),

        length=32,

        salt=salt,

        iterations=390000,

        backend=default_backend()

    )

    return base64.urlsafe_b64encode(kdf.derive(password.encode()))


def encrypt_file(filepath, password):

    with open(filepath, 'rb') as file:

        data = file.read()


    salt = os.urandom(16)

    key = derive_key(password, salt)

    fernet = Fernet(key)

    encrypted_data = fernet.encrypt(data)


    with open(filepath + ".locked", 'wb') as file:

        file.write(salt + encrypted_data)


    os.remove(filepath)

    print(f"šŸ”’ File encrypted as {filepath}.locked")


def decrypt_file(filepath, password):

    with open(filepath, 'rb') as file:

        content = file.read()


    salt = content[:16]

    encrypted_data = content[16:]

    key = derive_key(password, salt)

    fernet = Fernet(key)


    try:

        decrypted_data = fernet.decrypt(encrypted_data)

    except Exception:

        print("❌ Wrong password or corrupted file.")

        return


    original_path = filepath.replace(".locked", "")

    with open(original_path, 'wb') as file:

        file.write(decrypted_data)


    os.remove(filepath)

    print(f"šŸ”“ File decrypted as {original_path}")


def main():

    parser = argparse.ArgumentParser(description="šŸ” File Locker CLI")

    parser.add_argument("action", choices=["lock", "unlock"], help="Lock or unlock the file")

    parser.add_argument("filepath", help="Path to the file")


    args = parser.parse_args()

    password = getpass.getpass("Enter password: ")


    if args.action == "lock":

        encrypt_file(args.filepath, password)

    elif args.action == "unlock":

        decrypt_file(args.filepath, password)


if __name__ == "__main__":

    main()


Plagiarism Detector

 import difflib

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import cosine_similarity


def read_file(filename):

    with open(filename, 'r', encoding='utf-8') as file:

        return file.read()


def basic_diff_score(text1, text2):

    seq = difflib.SequenceMatcher(None, text1, text2)

    return round(seq.ratio() * 100, 2)


def nlp_cosine_similarity(text1, text2):

    tfidf = TfidfVectorizer().fit_transform([text1, text2])

    score = cosine_similarity(tfidf[0:1], tfidf[1:2])

    return round(score[0][0] * 100, 2)


def main():

    file1 = input("Enter path to first file: ")

    file2 = input("Enter path to second file: ")


    text1 = read_file(file1)

    text2 = read_file(file2)


    basic_score = basic_diff_score(text1, text2)

    nlp_score = nlp_cosine_similarity(text1, text2)


    print("\n--- Plagiarism Detection Result ---")

    print(f"Simple Match (difflib): {basic_score}%")

    print(f"Semantic Match (TF-IDF Cosine Similarity): {nlp_score}%")


    if nlp_score > 80:

        print("⚠️ High similarity detected. Possible plagiarism.")

    elif nlp_score > 50:

        print("⚠️ Moderate similarity. Review recommended.")

    else:

        print("✅ Low similarity. Likely original.")


if __name__ == "__main__":

    main()


Online Exam Proctoring Tool

import cv2

import face_recognition

import datetime


def log_alert(msg):

    with open("proctoring_log.txt", "a") as f:

        f.write(f"{datetime.datetime.now()} - {msg}\n")


def main():

    cap = cv2.VideoCapture(0)


    if not cap.isOpened():

        print("Could not access webcam.")

        return


    print("[INFO] Proctoring started. Press 'q' to quit.")


    while True:

        ret, frame = cap.read()

        if not ret:

            break


        # Resize frame for faster processing

        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

        rgb_small_frame = small_frame[:, :, ::-1]


        # Detect all faces

        face_locations = face_recognition.face_locations(rgb_small_frame)

        face_count = len(face_locations)


        # Draw rectangles around faces

        for (top, right, bottom, left) in face_locations:

            top, right, bottom, left = top*4, right*4, bottom*4, left*4

            cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)


        # Check for multiple faces

        if face_count > 1:

            cv2.putText(frame, "ALERT: Multiple Faces Detected!", (10, 30),

                        cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2)

            log_alert("Multiple faces detected!")


        # Show output

        cv2.imshow("Exam Proctoring Feed", frame)


        # Break on 'q' key

        if cv2.waitKey(1) & 0xFF == ord('q'):

            break


    cap.release()

    cv2.destroyAllWindows()

    print("[INFO] Proctoring ended.")


if __name__ == "__main__":

    main()


Budget Planner with Visualization

 import pandas as pd

import matplotlib.pyplot as plt

from tkinter import *

from tkinter import ttk, messagebox

import os

from datetime import datetime


# Create main window

root = Tk()

root.title("Budget Planner with Visualization")

root.geometry("800x600")


# CSV file name

filename = "budget_data.csv"


# Load existing data

if os.path.exists(filename):

    df = pd.read_csv(filename)

else:

    df = pd.DataFrame(columns=["Date", "Category", "Type", "Amount"])


# Function to add entry

def add_entry():

    date = date_entry.get()

    category = category_entry.get()

    ttype = type_combo.get()

    amount = amount_entry.get()


    if not date or not category or not ttype or not amount:

        messagebox.showerror("Input Error", "All fields are required.")

        return


    try:

        datetime.strptime(date, "%Y-%m-%d")

        amount = float(amount)

    except:

        messagebox.showerror("Input Error", "Invalid date or amount.")

        return


    new_entry = {"Date": date, "Category": category, "Type": ttype, "Amount": amount}

    global df

    df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)

    df.to_csv(filename, index=False)

    update_table()

    messagebox.showinfo("Success", "Entry added successfully!")


# Function to update table

def update_table():

    for row in tree.get_children():

        tree.delete(row)

    for index, row in df.iterrows():

        tree.insert("", "end", values=list(row))


# Function to show chart

def show_chart():

    try:

        expense_df = df[df["Type"] == "Expense"]

        summary = expense_df.groupby("Category")["Amount"].sum()

        summary.plot.pie(autopct="%1.1f%%", startangle=90)

        plt.title("Expenses by Category")

        plt.ylabel("")

        plt.show()

    except Exception as e:

        messagebox.showerror("Chart Error", str(e))


# Input Form

form_frame = Frame(root)

form_frame.pack(pady=10)


Label(form_frame, text="Date (YYYY-MM-DD)").grid(row=0, column=0, padx=5)

date_entry = Entry(form_frame)

date_entry.grid(row=0, column=1, padx=5)


Label(form_frame, text="Category").grid(row=0, column=2, padx=5)

category_entry = Entry(form_frame)

category_entry.grid(row=0, column=3, padx=5)


Label(form_frame, text="Type").grid(row=1, column=0, padx=5)

type_combo = ttk.Combobox(form_frame, values=["Income", "Expense"], state="readonly")

type_combo.grid(row=1, column=1, padx=5)


Label(form_frame, text="Amount").grid(row=1, column=2, padx=5)

amount_entry = Entry(form_frame)

amount_entry.grid(row=1, column=3, padx=5)


Button(form_frame, text="Add Entry", command=add_entry).grid(row=2, column=0, columnspan=4, pady=10)


# Treeview

tree = ttk.Treeview(root, columns=["Date", "Category", "Type", "Amount"], show="headings")

for col in ["Date", "Category", "Type", "Amount"]:

    tree.heading(col, text=col)

    tree.column(col, width=150)

tree.pack(fill=BOTH, expand=True, pady=10)


# Show chart button

Button(root, text="Show Expense Chart", command=show_chart).pack(pady=10)


# Load initial table

update_table()


root.mainloop()


Website Availability & Uptime Tracker

 import requests

import schedule

import time

import smtplib

from email.mime.text import MIMEText


# List of websites to track

websites = {

    "Google": "https://www.google.com",

    "My Portfolio": "https://yourportfolio.com"

}


# Email Config

EMAIL_ADDRESS = "your_email@gmail.com"

EMAIL_PASSWORD = "your_app_password"

TO_EMAIL = "recipient_email@example.com"


def send_email_alert(site):

    msg = MIMEText(f"Alert: {site} is DOWN!")

    msg["Subject"] = f"🚨 {site} is Down!"

    msg["From"] = EMAIL_ADDRESS

    msg["To"] = TO_EMAIL


    with smtplib.SMTP_SSL("smtp.gmail.com", 465) as smtp:

        smtp.login(EMAIL_ADDRESS, EMAIL_PASSWORD)

        smtp.send_message(msg)

        print(f"Email sent: {site} is down.")


def check_sites():

    for name, url in websites.items():

        try:

            response = requests.get(url, timeout=5)

            if response.status_code != 200:

                print(f"[{name}] Status: {response.status_code}")

                send_email_alert(name)

            else:

                print(f"[{name}] is up ✅")

        except requests.exceptions.RequestException:

            print(f"[{name}] is unreachable ❌")

            send_email_alert(name)


# Check every 5 minutes

schedule.every(5).minutes.do(check_sites)


print("šŸ” Website Uptime Tracker Started...")

while True:

    schedule.run_pending()

    time.sleep(1)



Twilio SMS Integration


from twilio.rest import Client

account_sid = "your_sid"
auth_token = "your_token"
twilio_number = "+1234567890"
receiver_number = "+91999xxxxxxx"

def send_sms_alert(site):
    client = Client(account_sid, auth_token)
    client.messages.create(
        body=f"🚨 {site} is DOWN!",
        from_=twilio_number,
        to=receiver_number
    )

Document Similarity Checker

 import streamlit as st

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.metrics.pairwise import cosine_similarity

import spacy


nlp = spacy.load("en_core_web_sm")


st.title("šŸ“„ Document Similarity Checker")


def preprocess(text):

    doc = nlp(text)

    return " ".join([token.lemma_ for token in doc if not token.is_stop and token.is_alpha])


file1 = st.file_uploader("Upload First Document", type=["txt"])

file2 = st.file_uploader("Upload Second Document", type=["txt"])


if file1 and file2:

    text1 = file1.read().decode("utf-8")

    text2 = file2.read().decode("utf-8")


    clean_text1 = preprocess(text1)

    clean_text2 = preprocess(text2)


    tfidf = TfidfVectorizer()

    tfidf_matrix = tfidf.fit_transform([clean_text1, clean_text2])

    sim_score = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0]


    st.subheader("🧮 Similarity Score")

    st.write(f"**{sim_score:.2f}** (1 = identical, 0 = completely different)")


    if sim_score > 0.75:

        st.success("The documents are quite similar! 🟢")

    elif sim_score > 0.4:

        st.info("The documents are moderately similar. 🟔")

    else:

        st.warning("The documents are quite different. šŸ”“")


Smart Calendar CLI App

 import click

import requests

from datetime import datetime, timedelta


# Placeholder for real GCal and weather integration

EVENTS = [

    {"title": "Standup Meeting", "time": "10:00", "date": "2025-04-16", "location": "Remote"},

    {"title": "Doctor Appointment", "time": "15:00", "date": "2025-04-16", "location": "City Clinic"},

]


@click.group()

def cli():

    pass


@cli.command()

def today():

    click.echo("šŸ“… Today's Events:")

    today = datetime.today().strftime('%Y-%m-%d')

    for e in EVENTS:

        if e["date"] == today:

            click.echo(f"- {e['time']}: {e['title']} šŸ“ {e['location']}")


@cli.command()

@click.option('--title', prompt='Event title')

@click.option('--date', prompt='Event date (YYYY-MM-DD)')

@click.option('--time', prompt='Event time (HH:MM)')

@click.option('--location', prompt='Event location')

def add(title, date, time, location):

    EVENTS.append({"title": title, "date": date, "time": time, "location": location})

    click.echo("✅ Event created successfully!")


@cli.command()

def forecast():

    if not EVENTS:

        click.echo("No events to check weather for.")

        return

    event = EVENTS[-1]

    click.echo(f"🌦 Forecast for: {event['title']}")

    weather = get_weather(event['location'])

    click.echo(f"šŸ“ Location: {event['location']} | Date: {event['date']}")

    click.echo(f"☁️ Weather Forecast: {weather}")


def get_weather(city):

    API_KEY = "your_openweathermap_api_key"

    url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={API_KEY}&units=metric"

    r = requests.get(url)

    if r.status_code == 200:

        data = r.json()

        return f"{data['weather'][0]['main']}, {data['main']['temp']}°C"

    return "Weather data unavailable"


if __name__ == '__main__':

    cli()


Voice-Controlled Notes App

import speech_recognition as sr

import pyttsx3

import os


notes = {}


engine = pyttsx3.init()


def speak(text):

    engine.say(text)

    engine.runAndWait()


def listen_command():

    r = sr.Recognizer()

    with sr.Microphone() as source:

        speak("Listening...")

        audio = r.listen(source)

    try:

        command = r.recognize_google(audio)

        return command.lower()

    except:

        speak("Sorry, I didn't catch that.")

        return ""


def create_note():

    speak("What should I name the note?")

    title = listen_command()

    speak("What is the content?")

    content = listen_command()

    notes[title] = content

    speak(f"Note '{title}' created.")


def read_notes():

    if notes:

        for title, content in notes.items():

            speak(f"{title}: {content}")

    else:

        speak("No notes found.")


def delete_note():

    speak("Which note should I delete?")

    title = listen_command()

    if title in notes:

        del notes[title]

        speak(f"Note '{title}' deleted.")

    else:

        speak("Note not found.")


def main():

    speak("Voice Notes App Started.")

    while True:

        speak("Say a command: create, read, delete, or exit.")

        command = listen_command()


        if "create" in command:

            create_note()

        elif "read" in command:

            read_notes()

        elif "delete" in command:

            delete_note()

        elif "exit" in command:

            speak("Goodbye!")

            break

        else:

            speak("Unknown command.")


if __name__ == "__main__":

    main()


Chemistry Molecule Visualizer

 import streamlit as st

from rdkit import Chem

from rdkit.Chem import Draw, Descriptors

import py3Dmol


def mol_to_3d_view(smiles):

    mol = Chem.MolFromSmiles(smiles)

    mb = Chem.AddHs(mol)

    Chem.EmbedMolecule(mb)

    mol_block = Chem.MolToMolBlock(mb)


    viewer = py3Dmol.view(width=400, height=400)

    viewer.addModel(mol_block, 'mol')

    viewer.setStyle({'stick': {}})

    viewer.zoomTo()

    return viewer


st.title("🧪 Chemistry Molecule Visualizer")


smiles = st.text_input("Enter SMILES string", "CC(=O)O")  # Acetic Acid


if smiles:

    mol = Chem.MolFromSmiles(smiles)

    

    if mol:

        st.subheader("šŸ“Œ Molecular Structure (2D)")

        st.image(Draw.MolToImage(mol, size=(300, 300)))


        st.subheader("šŸ”¬ Properties")

        st.markdown(f"**Formula**: {Chem.rdMolDescriptors.CalcMolFormula(mol)}")

        st.markdown(f"**Molecular Weight**: {Descriptors.MolWt(mol):.2f} g/mol")


        st.subheader("🧬 3D Structure")

        viewer = mol_to_3d_view(smiles)

        viewer_html = viewer._make_html()

        st.components.v1.html(viewer_html, height=450)

    else:

        st.error("Invalid SMILES string. Try again.")


Receipt Text Extractor & Analyzer

 OCR using pytesseract

from PIL import Image

import pytesseract


def extract_text_from_image(image_path):

    image = Image.open(image_path)

    text = pytesseract.image_to_string(image)

    return text

Parse Items and Prices with re

import re

def parse_items(raw_text):
    # Match lines like: "Bread 2.50" or "Milk ....... 1.25"
    pattern = r"([A-Za-z\s]+)\s+([\d]+\.\d{2})"
    matches = re.findall(pattern, raw_text)
    
    items = [{"item": item.strip(), "price": float(price)} for item, price in matches]
    
    total = sum(i["price"] for i in items)
    avg = total / len(items) if items else 0
    
    return items, total, avg

(Optional) Step 3: Streamlit Interface


import streamlit as st
from utils.text_parser import extract_text_from_image, parse_items
import tempfile
import pandas as pd

st.title("🧾 Receipt Text Extractor & Analyzer")
uploaded_file = st.file_uploader("Upload Receipt Image", type=["jpg", "png", "jpeg"])

if uploaded_file:
    with tempfile.NamedTemporaryFile(delete=False) as tmp:
        tmp.write(uploaded_file.read())
        tmp_path = tmp.name

    raw_text = extract_text_from_image(tmp_path)
    items, total, avg = parse_items(raw_text)

    df = pd.DataFrame(items)
    st.subheader("šŸ›’ Items Detected:")
    st.table(df)

    st.markdown(f"**Total Cost:** ₹{total:.2f}")
    st.markdown(f"**Average Item Cost:** ₹{avg:.2f}")

    # Download as CSV
    csv = df.to_csv(index=False).encode()
    st.download_button("šŸ“„ Download CSV", csv, "receipt_data.csv", "text/csv")

Music Genre Classifier

 # utils/feature_extractor.py

import librosa

import numpy as np


def extract_features(file_path):

    y, sr = librosa.load(file_path, duration=30)

    mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)

    mfccs_mean = np.mean(mfccs.T, axis=0)

    return mfccs_mean


from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
import joblib

# Load features (extracted previously)
df = pd.read_csv("features_dataset.csv")  # Your dataset with MFCC + genre
X = df.drop('genre', axis=1)
y = df['genre']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf = RandomForestClassifier()
clf.fit(X_train, y_train)

# Save model
joblib.dump(clf, "model/genre_model.pkl")


# app.py
import streamlit as st
import joblib
import numpy as np
from utils.feature_extractor import extract_features
import tempfile

# Load model
model = joblib.load("model/genre_model.pkl")

st.title("šŸŽµ Music Genre Classifier")
st.write("Upload a music file to predict its genre")

uploaded_file = st.file_uploader("Choose a file", type=["mp3", "wav"])

if uploaded_file:
    # Save temporarily
    with tempfile.NamedTemporaryFile(delete=False) as tmp:
        tmp.write(uploaded_file.read())
        tmp_path = tmp.name

    # Extract features and predict
    features = extract_features(tmp_path)
    prediction = model.predict([features])[0]
    proba = model.predict_proba([features])

    st.success(f"Predicted Genre: **{prediction}**")
    st.bar_chart(proba[0])

Custom Dictionary Builder

 db.py

import sqlite3


def init_db():

    conn = sqlite3.connect("words.db")

    cursor = conn.cursor()

    cursor.execute('''CREATE TABLE IF NOT EXISTS dictionary (

                        id INTEGER PRIMARY KEY AUTOINCREMENT,

                        word TEXT,

                        language TEXT,

                        meaning TEXT,

                        synonyms TEXT,

                        audio_file TEXT)''')

    conn.commit()

    conn.close()


def add_word(word, lang, meaning, synonyms, audio_file):

    conn = sqlite3.connect("words.db")

    cursor = conn.cursor()

    cursor.execute("INSERT INTO dictionary (word, language, meaning, synonyms, audio_file) VALUES (?, ?, ?, ?, ?)",

                   (word, lang, meaning, synonyms, audio_file))

    conn.commit()

    conn.close()


def search_word(word):

    conn = sqlite3.connect("words.db")

    cursor = conn.cursor()

    cursor.execute("SELECT * FROM dictionary WHERE word = ?", (word,))

    result = cursor.fetchone()

    conn.close()

    return result

tts.py

from gtts import gTTS

import os


def generate_audio(word, lang='en'):

    tts = gTTS(text=word, lang=lang)

    audio_file = f"audio/{word}_{lang}.mp3"

    tts.save(audio_file)

    return audio_file

app.py

import tkinter as tk

from db import init_db, add_word, search_word

from tts import generate_audio

import os

from playsound import playsound


init_db()


def submit_word():

    word = entry_word.get()

    lang = entry_lang.get()

    meaning = entry_meaning.get()

    synonyms = entry_synonyms.get()

    audio_path = generate_audio(word, lang)

    add_word(word, lang, meaning, synonyms, audio_path)

    label_status.config(text="✅ Word added!")


def play_audio():

    word = entry_word.get()

    result = search_word(word)

    if result and os.path.exists(result[5]):

        playsound(result[5])

    else:

        label_status.config(text="❌ Audio not found.")


# GUI Setup

window = tk.Tk()

window.title("šŸ“š Custom Dictionary Builder")

window.geometry("400x400")


entry_word = tk.Entry(window)

entry_word.insert(0, "Word")

entry_word.pack(pady=5)


entry_lang = tk.Entry(window)

entry_lang.insert(0, "Language Code (e.g., en, es)")

entry_lang.pack(pady=5)


entry_meaning = tk.Entry(window)

entry_meaning.insert(0, "Meaning")

entry_meaning.pack(pady=5)


entry_synonyms = tk.Entry(window)

entry_synonyms.insert(0, "Synonyms")

entry_synonyms.pack(pady=5)


tk.Button(window, text="Add Word", command=submit_word).pack(pady=10)

tk.Button(window, text="Play Pronunciation", command=play_audio).pack(pady=5)


label_status = tk.Label(window, text="")

label_status.pack(pady=10)


window.mainloop()



Language Codes for gTTS:

  • English: en

  • Hindi: hi

  • Spanish: es

  • French: fr

  • Malayalam: ml

  • Tamil: ta

Mindfulness & Focus Timer App

 main.py

import tkinter as tk

from timer import start_pomodoro

from breathing import start_breathing

from prompts import get_prompt


window = tk.Tk()

window.title("🧠 Mindfulness & Focus Timer")

window.geometry("400x300")


label = tk.Label(window, text="Welcome to Focus Time!", font=("Helvetica", 16))

label.pack(pady=10)


tk.Button(window, text="Start Pomodoro", command=start_pomodoro).pack(pady=10)

tk.Button(window, text="Breathing Exercise", command=start_breathing).pack(pady=10)

tk.Button(window, text="Get Mindfulness Prompt", command=lambda: label.config(text=get_prompt())).pack(pady=10)


window.mainloop()

timer.py

import time
import pygame
import threading

def play_sound():
    pygame.init()
    pygame.mixer.init()
    pygame.mixer.music.load("sounds/ding.wav")
    pygame.mixer.music.play()

def start_pomodoro():
    def run():
        print("Focus time started!")
        for i in range(25 * 60, 0, -1):
            mins, secs = divmod(i, 60)
            print(f"{mins:02d}:{secs:02d}", end='\r')
            time.sleep(1)
        play_sound()
        print("\nTime for a break!")

    threading.Thread(target=run).start()

breathing.py

import time
import threading

def start_breathing():
    def run():
        print("Follow the breathing pattern:")
        for _ in range(4):
            print("Inhale... 🫁")
            time.sleep(4)
            print("Hold... ✋")
            time.sleep(4)
            print("Exhale... 😮‍šŸ’Ø")
            time.sleep(4)
    threading.Thread(target=run).start()

prompts.py

import random

prompts = [
    "Breathe in clarity, breathe out stress.",
    "Focus on one thing at a time.",
    "You are in control of your day.",
    "Be here now. 🌱",
    "Let go of what you can't control."
]

def get_prompt():
    return random.choice(prompts)


AI Image Caption Generator

 import numpy as np

import tensorflow as tf

from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input

from tensorflow.keras.preprocessing import image

from tensorflow.keras.models import Model, load_model

import pickle

import cv2

import streamlit as st

from PIL import Image


# Load Pretrained InceptionV3 Model for Image Feature Extraction

base_model = InceptionV3(weights='imagenet')

model = Model(inputs=base_model.input, outputs=base_model.layers[-2].output)


# Load Pretrained Captioning Model

captioning_model = load_model("image_captioning_model.h5")


# Load Tokenizer & Word Mappings

with open("tokenizer.pickle", "rb") as handle:

    tokenizer = pickle.load(handle)


max_length = 35  # Max caption length


# Extract Features from Image

def extract_features(img_path):

    img = image.load_img(img_path, target_size=(299, 299))

    img = image.img_to_array(img)

    img = np.expand_dims(img, axis=0)

    img = preprocess_input(img)

    feature_vector = model.predict(img)

    return feature_vector


# Generate Caption

def generate_caption(img_path):

    image_features = extract_features(img_path)

    caption = "startseq"

    

    for i in range(max_length):

        sequence = [tokenizer.word_index[word] for word in caption.split() if word in tokenizer.word_index]

        sequence = tf.keras.preprocessing.sequence.pad_sequences([sequence], maxlen=max_length)

        predicted_index = np.argmax(captioning_model.predict([image_features, sequence]), axis=-1)

        word = tokenizer.index_word.get(predicted_index[0], "")

        if word == "endseq":

            break

        caption += " " + word

    

    return caption.replace("startseq", "").replace("endseq", "").strip()


# Streamlit Web Interface

st.title("šŸ–¼️ AI Image Caption Generator")

uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "png", "jpeg"])


if uploaded_file is not None:

    img = Image.open(uploaded_file)

    st.image(img, caption="Uploaded Image", use_column_width=True)

    

    # Save the uploaded image temporarily

    img_path = "temp.jpg"

    img.save(img_path)

    

    # Generate Caption

    with st.spinner("Generating Caption..."):

        caption_text = generate_caption(img_path)

    

    st.subheader("šŸ“ Generated Caption:")

    st.write(caption_text)


AI Resume Scorer

 import fitz  # PyMuPDF for PDF parsing

import docx2txt

import spacy

import re

from collections import Counter

import tkinter as tk

from tkinter import filedialog, messagebox


# Load NLP Model (English)

nlp = spacy.load("en_core_web_sm")


# Job Description (Example)

job_description = """

We are looking for a Data Scientist with expertise in Python, Machine Learning, and Data Analysis.

Candidates must have experience with Pandas, NumPy, and Scikit-learn.

Strong communication and teamwork skills are required.

"""


# Function to extract text from PDF

def extract_text_from_pdf(pdf_path):

    text = ""

    doc = fitz.open(pdf_path)

    for page in doc:

        text += page.get_text()

    return text


# Function to extract text from DOCX

def extract_text_from_docx(docx_path):

    return docx2txt.process(docx_path)


# Function to clean and preprocess text

def clean_text(text):

    text = re.sub(r"\s+", " ", text)  # Remove extra spaces

    text = text.lower()  # Convert to lowercase

    return text


# Function to extract keywords using NLP

def extract_keywords(text):

    doc = nlp(text)

    keywords = [token.text for token in doc if token.is_alpha and not token.is_stop]

    return Counter(keywords)


# Function to score the resume

def score_resume(resume_text, job_description):

    resume_keywords = extract_keywords(resume_text)

    job_keywords = extract_keywords(job_description)


    # Calculate Keyword Match Score

    matched_keywords = sum((resume_keywords & job_keywords).values())

    total_keywords = sum(job_keywords.values())

    keyword_score = (matched_keywords / total_keywords) * 100 if total_keywords else 0


    # Readability Score (Basic: Word Count / Sentence Count)

    sentence_count = len(re.findall(r"[.!?]", resume_text))

    word_count = len(resume_text.split())

    readability_score = (word_count / (sentence_count + 1)) * 2  # Simplified readability measure


    # Final Score Calculation (Weighted Average)

    final_score = (keyword_score * 0.7) + (readability_score * 0.3)

    return round(final_score, 2), keyword_score, readability_score


# GUI for File Upload

def upload_file():

    file_path = filedialog.askopenfilename(filetypes=[("PDF Files", "*.pdf"), ("Word Files", "*.docx")])

    

    if file_path:

        if file_path.endswith(".pdf"):

            resume_text = extract_text_from_pdf(file_path)

        elif file_path.endswith(".docx"):

            resume_text = extract_text_from_docx(file_path)

        else:

            messagebox.showerror("Error", "Unsupported file format!")

            return

        

        # Clean and score resume

        cleaned_resume = clean_text(resume_text)

        final_score, keyword_score, readability_score = score_resume(cleaned_resume, job_description)

        

        # Show results

        messagebox.showinfo("Resume Score", f"šŸ“„ Resume Score: {final_score}%\n\n"

                                             f"šŸ”‘ Keyword Match: {keyword_score:.2f}%\n"

                                             f"šŸ“– Readability Score: {readability_score:.2f}%")


# GUI Setup

root = tk.Tk()

root.title("AI Resume Scorer")

root.geometry("300x200")


upload_btn = tk.Button(root, text="Upload Resume", command=upload_file, padx=10, pady=5)

upload_btn.pack(pady=20)


root.mainloop()


Job Application Tracker

 import tkinter as tk

from tkinter import ttk, messagebox

import sqlite3

import pandas as pd

import smtplib


# Database Setup

conn = sqlite3.connect("job_tracker.db")

cursor = conn.cursor()

cursor.execute("""

    CREATE TABLE IF NOT EXISTS jobs (

        id INTEGER PRIMARY KEY AUTOINCREMENT,

        company TEXT,

        role TEXT,

        date_applied TEXT,

        status TEXT

    )

""")

conn.commit()


# GUI Application

class JobTrackerApp:

    def __init__(self, root):

        self.root = root

        self.root.title("Job Application Tracker")

        self.root.geometry("600x400")


        # Labels

        ttk.Label(root, text="Company:").grid(row=0, column=0)

        ttk.Label(root, text="Role:").grid(row=1, column=0)

        ttk.Label(root, text="Date Applied:").grid(row=2, column=0)

        ttk.Label(root, text="Status:").grid(row=3, column=0)


        # Entry Fields

        self.company_entry = ttk.Entry(root)

        self.role_entry = ttk.Entry(root)

        self.date_entry = ttk.Entry(root)

        self.status_combo = ttk.Combobox(root, values=["Pending", "Interview", "Rejected", "Hired"])

        

        self.company_entry.grid(row=0, column=1)

        self.role_entry.grid(row=1, column=1)

        self.date_entry.grid(row=2, column=1)

        self.status_combo.grid(row=3, column=1)


        # Buttons

        ttk.Button(root, text="Add Job", command=self.add_job).grid(row=4, column=0)

        ttk.Button(root, text="Show Jobs", command=self.show_jobs).grid(row=4, column=1)

        ttk.Button(root, text="Export to CSV", command=self.export_csv).grid(row=5, column=0)

        ttk.Button(root, text="Send Follow-up", command=self.send_followup).grid(row=5, column=1)


    def add_job(self):

        company = self.company_entry.get()

        role = self.role_entry.get()

        date = self.date_entry.get()

        status = self.status_combo.get()


        if not company or not role or not date or not status:

            messagebox.showerror("Error", "All fields are required!")

            return

        

        cursor.execute("INSERT INTO jobs (company, role, date_applied, status) VALUES (?, ?, ?, ?)", 

                       (company, role, date, status))

        conn.commit()

        messagebox.showinfo("Success", "Job Application Added!")


    def show_jobs(self):

        jobs_window = tk.Toplevel(self.root)

        jobs_window.title("Job Applications")

        tree = ttk.Treeview(jobs_window, columns=("ID", "Company", "Role", "Date", "Status"), show="headings")

        tree.heading("ID", text="ID")

        tree.heading("Company", text="Company")

        tree.heading("Role", text="Role")

        tree.heading("Date", text="Date Applied")

        tree.heading("Status", text="Status")

        tree.pack(fill="both", expand=True)


        cursor.execute("SELECT * FROM jobs")

        for row in cursor.fetchall():

            tree.insert("", "end", values=row)


    def export_csv(self):

        cursor.execute("SELECT * FROM jobs")

        data = cursor.fetchall()

        df = pd.DataFrame(data, columns=["ID", "Company", "Role", "Date Applied", "Status"])

        df.to_csv("job_applications.csv", index=False)

        messagebox.showinfo("Exported", "Job Applications saved as CSV!")


    def send_followup(self):

        email = "your-email@gmail.com"  # Change to your email

        password = "your-password"  # Use App Password for security


        cursor.execute("SELECT company, role FROM jobs WHERE status='Pending'")

        pending_jobs = cursor.fetchall()


        if not pending_jobs:

            messagebox.showinfo("No Follow-ups", "No pending applications to follow up on.")

            return

        

        msg = "Subject: Follow-up on Job Applications\n\n"

        msg += "Here are your pending job applications:\n"

        for company, role in pending_jobs:

            msg += f"- {role} at {company}\n"


        try:

            server = smtplib.SMTP("smtp.gmail.com", 587)

            server.starttls()

            server.login(email, password)

            server.sendmail(email, email, msg)

            server.quit()

            messagebox.showinfo("Email Sent", "Follow-up email sent successfully!")

        except Exception as e:

            messagebox.showerror("Error", f"Failed to send email: {e}")


# Run App

root = tk.Tk()

app = JobTrackerApp(root)

root.mainloop()


Automated Email Responder

 import imaplib

import smtplib

import email

from email.mime.text import MIMEText

import openai


# Gmail Credentials

EMAIL_USER = "your_email@gmail.com"

EMAIL_PASS = "your_app_password"


# OpenAI API Key (Optional)

OPENAI_API_KEY = "your_openai_api_key"

openai.api_key = OPENAI_API_KEY


# Connect to Gmail Inbox

def check_inbox():

    mail = imaplib.IMAP4_SSL("imap.gmail.com")

    mail.login(EMAIL_USER, EMAIL_PASS)

    mail.select("inbox")


    _, messages = mail.search(None, "UNSEEN")

    email_ids = messages[0].split()


    for email_id in email_ids:

        _, msg_data = mail.fetch(email_id, "(RFC822)")

        for response_part in msg_data:

            if isinstance(response_part, tuple):

                msg = email.message_from_bytes(response_part[1])

                sender = msg["From"]

                subject = msg["Subject"]

                body = extract_body(msg)


                print(f"New Email from: {sender}")

                print(f"Subject: {subject}")

                print(f"Body: {body}")


                reply_message = generate_reply(body)

                send_email(sender, reply_message)


    mail.logout()


# Extract Email Body

def extract_body(msg):

    if msg.is_multipart():

        for part in msg.walk():

            if part.get_content_type() == "text/plain":

                return part.get_payload(decode=True).decode()

    return msg.get_payload(decode=True).decode()


# Generate AI-Based Response (Optional)

def generate_reply(user_query):

    prompt = f"Reply professionally to this email: {user_query}"

    response = openai.ChatCompletion.create(

        model="gpt-3.5-turbo",

        messages=[{"role": "system", "content": "You are a professional email assistant."},

                  {"role": "user", "content": prompt}]

    )

    return response["choices"][0]["message"]["content"]


# Send Email Response

def send_email(to_email, message):

    smtp_server = smtplib.SMTP_SSL("smtp.gmail.com", 465)

    smtp_server.login(EMAIL_USER, EMAIL_PASS)


    msg = MIMEText(message)

    msg["Subject"] = "Re: Your Inquiry"

    msg["From"] = EMAIL_USER

    msg["To"] = to_email


    smtp_server.sendmail(EMAIL_USER, to_email, msg.as_string())

    smtp_server.quit()

    print(f"Auto-reply sent to {to_email}")


# Run the Email Bot

if __name__ == "__main__":

    check_inbox()


YouTube Video Summarizer

 pip install youtube-transcript-api nltk sumy


import tkinter as tk
from tkinter import messagebox
from youtube_transcript_api import YouTubeTranscriptApi
from sumy.parsers.plaintext import PlaintextParser
from sumy.nlp.tokenizers import Tokenizer
from sumy.summarizers.lsa import LsaSummarizer

# Function to extract video ID from URL
def extract_video_id(url):
    if "youtube.com/watch?v=" in url:
        return url.split("v=")[1].split("&")[0]
    elif "youtu.be/" in url:
        return url.split("youtu.be/")[1].split("?")[0]
    else:
        return None

# Function to fetch transcript
def get_transcript(video_url):
    video_id = extract_video_id(video_url)
    if not video_id:
        messagebox.showerror("Error", "Invalid YouTube URL")
        return None

    try:
        transcript = YouTubeTranscriptApi.get_transcript(video_id)
        full_text = " ".join([entry["text"] for entry in transcript])
        return full_text
    except Exception as e:
        messagebox.showerror("Error", f"Could not fetch transcript: {str(e)}")
        return None

# Function to summarize text
def summarize_text(text, num_sentences=3):
    parser = PlaintextParser.from_string(text, Tokenizer("english"))
    summarizer = LsaSummarizer()
    summary = summarizer(parser.document, num_sentences)
    return " ".join(str(sentence) for sentence in summary)

# Function to fetch and summarize
def summarize_video():
    video_url = url_entry.get()
    transcript = get_transcript(video_url)
    
    if transcript:
        summary = summarize_text(transcript)
        output_text.delete("1.0", tk.END)
        output_text.insert(tk.END, summary)

# GUI
root = tk.Tk()
root.title("YouTube Video Summarizer")

tk.Label(root, text="Enter YouTube Video URL:").pack()
url_entry = tk.Entry(root, width=50)
url_entry.pack()

tk.Button(root, text="Summarize", command=summarize_video).pack()

output_text = tk.Text(root, height=10, width=60)
output_text.pack()

root.mainloop()